Бесконечно большая - Definition. Was ist Бесконечно большая
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Бесконечно большая - definition

Гладкий анализ бесконечно малых

Бесконечно большая      

в математике, переменная величина, которая в данном процессе изменения становится и остаётся по абсолютной величине больше любого наперёд заданного числа. Изучение Б. б. величин может быть сведено к изучению бесконечно малых (См. Бесконечно малая), т.к. если у есть Б. б. величина, то обратная ей величина z = 1/y является бесконечно малой. Тот факт, что переменная у является Б. б., записывают в виде lim y = ∞. При этом символ∞ ("бесконечность") является просто условным обозначением того, что у есть Б. б. величина. Возможна и др. точка зрения, в силу которой ∞ является несобственным элементом, присоединяемым к множеству действительных чисел (см. Бесконечность в математике). Применительно к функции аргумента х развёрнутое определение Б. б. звучит так: функция f (x), определённая в окрестности точки х0, называется Б. б. при х, стремящемся к х0, если для любого числа N > 0 найдётся такое число δ>0, что для всех x ≠ x0 и таких, что |х - х0| < δ, выполняется неравенство |f (x)| > N. Это свойство записывается в виде

С. Б. Стечкин.

БЕСКОНЕЧНО БОЛЬШАЯ      
переменная величина Y, обратная бесконечно малой величине X, то есть Y = 1/X.
Большая пятёрка         
  • Африканский буйвол в [[Нгоронгоро]]
  • карабин]] для африканской охоты
  • Крупный буйвол — гордость каждого африканского охотника
  • Африканский саванновый слон
  • Лев
  • Охотник с убитым леопардом (Намибия)
  • Белый носорог
  • Теодор Рузвельт]] с убитым им слоном. В руках президента — «африканский штуцер»
("Больша́я пятёрка")

пять крупнейших частных акционерных коммерческих банковских монополий Англии - "Барклейс банк", "Мидленд банк", "Ллойдс банк", "Вестминстер банк" и "Нэшонал провиншел банк". С начала 20 в. эти банки представляли собой центр английского финансового капитала. Члены правлений "Б. п." состояли в правлениях крупнейших промышленных монополий и были связаны с правительством. В 1959 члены правлений этих банков занимали свыше 1000 постов в правлениях других акционерных обществ. В 1967 банки "Б. п." сосредоточивали около 90\% всех вкладов банков Соединённого королевства (около 10 млрд. ф. ст.) и имели около 12 тыс. отделений. Им принадлежали и находились под их контролем крупнейшие банки в странах бывшей Британской империи и других зависимых от Англии странах. В 1968 "Вестминстер банк" и "Нэшонал провиншел банк" объединились под названием "Нэшонал Вестминстер банк", произошло слияние "Барклейс банка" с шестым по размеру "Мартинс банком".

М. Ю. Бортник.

Wikipedia

Гладкий инфинитезимальный анализ

Гладкий инфинитезимальный анализ — это математически строгое переформулирование анализа в терминах инфинитезималей. Будучи основанным на идеях Уильяма Ловера и используя методы теории категорий, он рассматривает все функции как непрерывные и невыражаемые через дискретные элементы. Как теория это раздел синтетической дифференциальной геометрии.

Нильпотентными инфинитезималями называют числа ε {\displaystyle \varepsilon } , удовлетворяющие условию ε 2 = 0 {\displaystyle \varepsilon ^{2}=0} ; при этом совсем не обязательно ε = 0. {\displaystyle \varepsilon =0.}

Этот подход отходит от классической логики, используемой в обычной математике, отказываясь от закона исключённого третьего, утверждающего, что из ¬ ( a b ) {\displaystyle \neg (a\neq b)} следует a = b . {\displaystyle a=b.} В частности, для некоторых инфинитезималей ε {\displaystyle \varepsilon } нельзя доказать ни ε = 0 {\displaystyle \varepsilon =0} , ни ¬ ( ε = 0 ) {\displaystyle \neg (\varepsilon =0)} . То, что закон исключённого третьего не может выполняться, видно из следующей основной теоремы:

В гладком инфинитезимальном анализе любая функция, домен которой — R {\displaystyle \mathbb {R} } (вещественные числа, дополненные инфинитезималями), непрерывна и бесконечно дифференцируема.

Несмотря на это, можно попробовать определить разрывную функцию, например, как

f ( x ) = { 1 , x = 0 , 0 , x 0. {\displaystyle f(x)={\begin{cases}1,&x=0,\\0,&x\neq 0.\end{cases}}}

Если бы закон исключённого третьего выполнялся, это было бы полностью определённой, разрывной функцией. Однако существует множество значений x {\displaystyle x} — инфинитезималей, — для которых не выполняется ни x = 0 {\displaystyle x=0} , ни x 0 {\displaystyle x\neq 0} , так что эта функция определена не на всём R {\displaystyle \mathbb {R} } .

В типичных моделях гладкого инфинитезимального анализа инфинитезимали не являются обратимыми, и следовательно, эти модели не содержат бесконечных чисел. Однако также существуют модели с обратимыми инфинитезималями.

Существуют также другие системы, включающие инфинитезимали, например нестандартный анализ и сюрреальные числа. Гладкий инфинитезимальный анализ похож на нестандартный анализ в том, что он разработан как основание анализа, и инфинитезимали не имеют конкретных величин (в противоположность сюрреальным числам, в которых типичный пример инфинитезималя — 1 / ω {\displaystyle 1/\omega } , где ω {\displaystyle \omega } — ординал фон Неймана). Однако гладкий инфинитезимальный анализ отличен от нестандартного анализа в том, что он использует неклассическую логику, и в том, что для него нарушается принцип переноса. Некоторые теоремы стандартного и нестандартного анализа ложны в гладком инфинитезимальном анализе, примерами служат теорема Больцано — Коши и парадокс Банаха — Тарского (последний доказуем в классической математике в рамках ZFC, но недоказуем в ZF). Утверждения на языке нестандартного анализа могут быть переведены в утверждения о пределах, но то же самое не всегда верно в гладком инфинитезимальном анализе.

Интуитивно гладкий инфинитезимальный анализ можно интерпретировать как описывающий мир, в котором линии состоят из бесконечно малых отрезков, а не из точек. Эти отрезки можно считать достаточно длинными, чтобы иметь определённое направление, но недостаточно длинными, чтобы искривляться. Конструирование разрывных функций не удаётся потому, что функция отождествляется с кривой, а кривую нельзя сконструировать поточечно. Можно представить, что теорема Больцано — Коши не выполняется из-за способности инфинитезимального отрезка «перекидываться» через разрыв. Аналогично, парадокс Банаха — Тарского не выполняется потому, что область нельзя разделить на точки.

Beispiele aus Textkorpus für Бесконечно большая
1. "Сцена встречи Штирлица с женой в кафе по кинематографическим меркам бесконечно большая, писал в дневнике Микаэл Леонович.
2. Во-о-от ты где находишься, вот ты какой тщеславный да самолюбивый!" - Но, согласитесь, есть бесконечно большая система условностей, которая и называется культура, искусство...